PROTEA biopharma Press Conference Ritz Hotel London, Thursday 28th of May 2009

Unravelling the Origin of Myalgic Encephalomyelitis: Gastrointestinal Dysfunction, Production of Neurotoxins and Environmental Exposure

Prof. Kenny De Meirleir, M.D, Ph.D Chris Roelant, Ph.D Marc Frémont, Ph.D

• Persistent, debilitating fatigue associated with numerous physical and neurocognitive symptoms

Disease severity can range from moderate to extremely severe: patients bedridden for years, totally caregiver dependent

• Prevalence estimates: 0,3 to 0,6%; one million patients in the USA, two million patients in Europe

This may just be the tip of the iceberg

• High socio-economic cost

Cost to the society estimated as approximately \$16 billion in the USA, \in 20 billion in Europe

• Patients usually present with multiple intestinal symptoms including:

NauseaAbdPoor appetiteAbnGastric refluxBloat

Abdominal pain Abnormal bowel motility Bloating

- Inflammation of the gastrointestinal tract
- Marked alteration of the intestinal microbial flora

• *Enterococcus* and *Streptococcus* species are strongly over-represented in ME patients :

Organisms	Control	ME patients	<i>p-</i> value
E.coli	1.0 x 10 ⁸	4.26 x 10 ⁷	<i>p</i> =0.98
<i>Enterococcus</i> spp.	5.0 x 10 ⁶	3.5 x 10 ⁷	<i>p</i> <0.001
<i>Streptococcus</i> spp.	8.9 x 10 ⁴	9.8 x 10 ⁷	<i>p</i> <0.001

• Among anaerobic bacteria, *Prevotella* is the most consistently overgrown bacteria :

Organisms	Control	ME patients	<i>p-</i> value
Bacteroides spp.	3.2 x 10 ¹¹	1.6 x 10 ¹¹	<i>p</i> =0.39
<i>Prevotella</i> spp.	1.0 X 10 ⁸	9.0 x 10 ⁹	<i>p</i> < 0.001
Bifidobacterium spp.	6.0 x 10 ⁸	5.5 x 10 ⁹	<i>p</i> =0.001
Lactobacillus spp.	2.7 x 10 ⁷	1.8 x 10 ⁸	<i>p</i> =0.002

• *Enterococcus* spp. counts correlate with symptom expression :

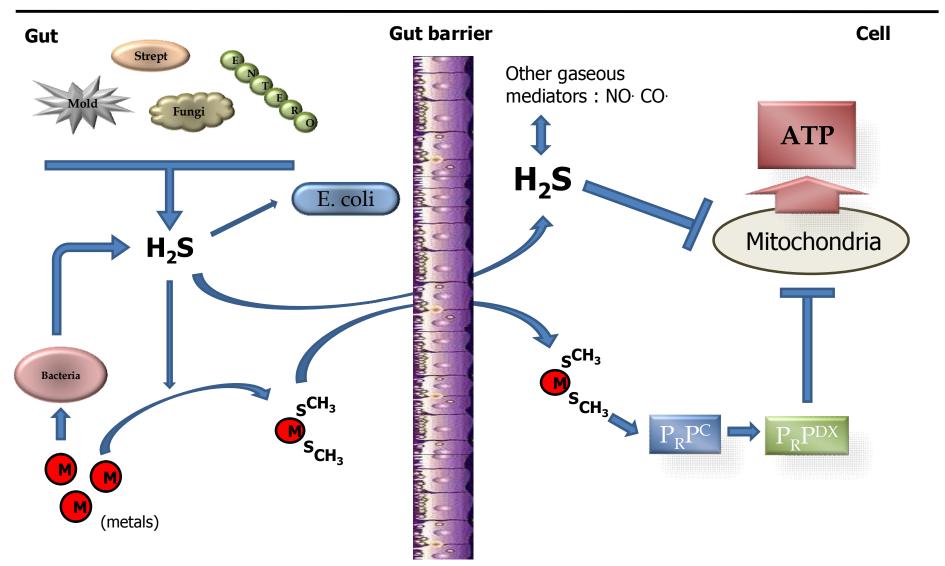
Symptoms	r and <i>p</i> -values
Headache	r=.17, p<0.01
Arm pain	r=.20, <i>p</i><0.003
Shoulder pain	r=.15, p<0.04
Myalgia	r=.20, <i>p</i><0.003
Palpitations	r=.16, p<0.02
Sleep disturbance	r=.20, <i>p</i><0.004

• *Streptococcus* spp. counts correlate with symptom expression :

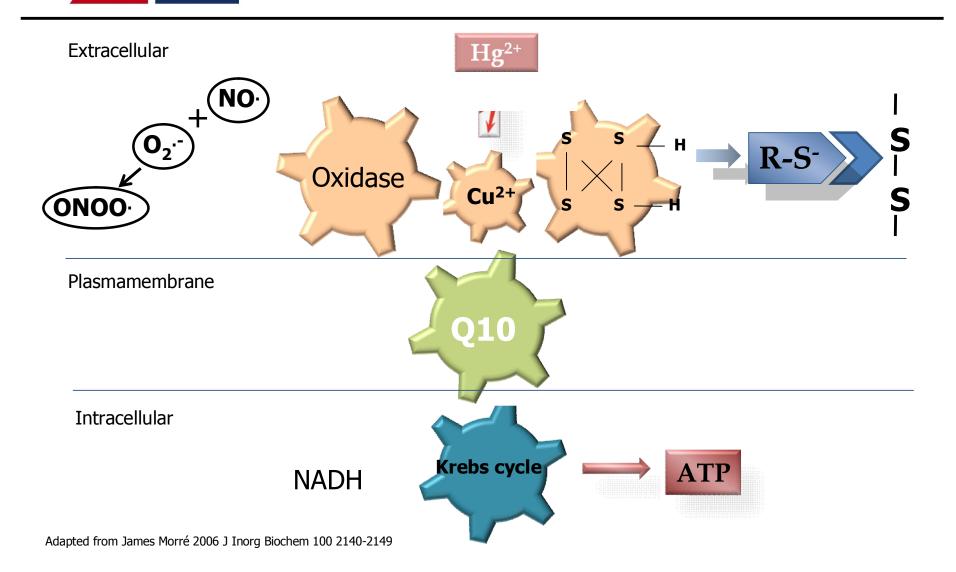
Symptoms	r and <i>p</i> -values
Post Exertional fatigue	r=.15, p<0.03
Photophobia	r=.14, <i>p</i><0.04
Mind going blank	r=.17, p<0.01
Cervical gland lymphodynia	r=.14 <i>p</i><0.04
Palpitations	r=.15, p<0.03
Dizziness/Faintness	r=.14, <i>p</i><0.05

• Hydrogen sulfide (H₂S) has important physiological functions...

H₂S is produced by the cells and is an important gaseous signal molecule, involved in regulation of blood pressure, neurotransmission, muscle relaxation and regulation of inflammation

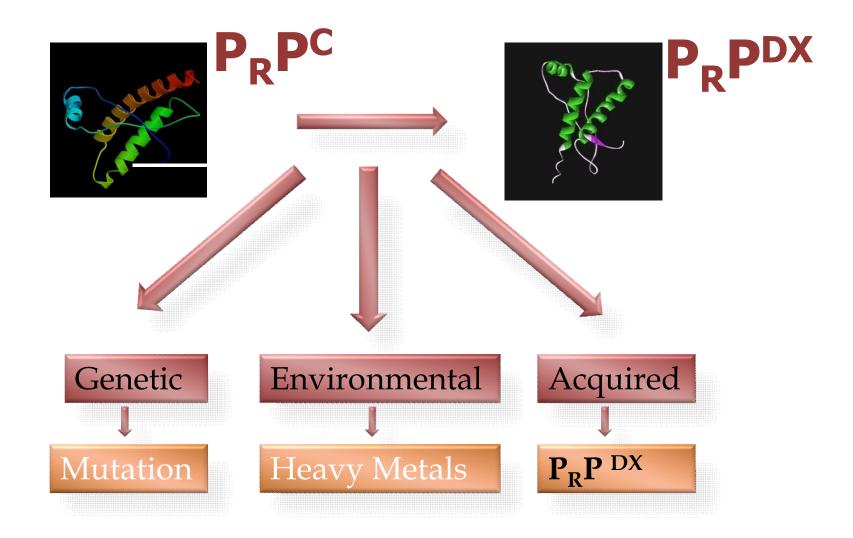

• ...but exogeneous exposure can be extremely toxic

In excess, H₂S acts as a mitochondrial poison. It can directly inhibit enzymes involved in the cellular production of energy. H₂S also interferes with oxygen transport by blocking hemoglobin in the red blood cells.


Enterococcus, Streptococcus, Prevotella are strong H₂S producers

PROTEA biopharma

Cumulative effects of H₂S and heavy metals

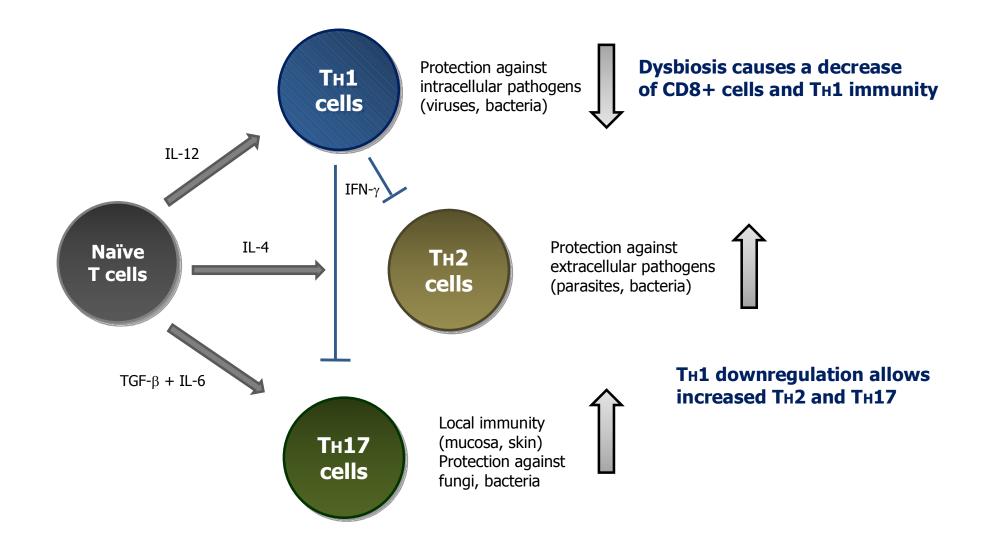


Heavy metals interfere directly with energy production

PROTEA biopharma

Genetic and environmental factors contribute to aberrant protein conformation

Abnormal conformation can be transmitted from one cell to another


Disease severity in ME is associated with different physiological dysfunctions

	I "Pre-ME″	II Moderate disease	III Severe disease
Dysfunctions	Abnormal faecal test, high H ₂ S	Abnormal faecal test, high H ₂ S, exposure to heavy metals	Abnormal faecal test, high H ₂ S, exposure to heavy metals that has caused aberrant protein conformation (APD)
Symptoms	No fatigue, possible gastro- intestinal symptoms. Low VO ₂ , slow recovery. May be asymptomatic	Fatigue, gastro-intestinal symptoms	Strong fatigue, multiple symptoms
Treatment	Restore the gut: probiotics	Restore the gut: probiotics, enterocoated antibiotics. Metal chelation, Zinc supplementation	Difficult. Gut restoration, metal chelation. Treatment of associated dysfunctions (opportunistic infections). Treatment of APD is still experimental

Increasing immune dysregulations (depressed T and NK cells, Th17 activation, opportunistic infections...)

Immune alterations resulting from intestinal dysfunction

PROTEA biopharma

• TH1 decrease favors the development of opportunistic viral infections

HHV-6, Epstein-Barr, parvovirus B19, enteroviruses are found in ME patients. Gastro-intestinal mucosa is a major site of infection

	ction of Herpesviruses and Parvovirus B19 in Gastric and testinal Mucosa of Chronic Fatigue Syndrome Patients
MARC FI	RÉMONT ⁴ , KRISTINE METZGER ¹ , HAMADA RADY ² , JAN HULSTAERT ³ and KENNY DE MEIRLEIR ⁴
	[†] Protea Biopharma, Zellik;
	² Vrije Universiteit Brussel, ⁴ Department of Human Physiology and Medicine, Brussels; ³ General Hospikul Jan Portaels, Department of Gastroenterology, Vilvoonle, Belgium

• TH2 increase favors the development of allergies

• TH17 increase promotes inflammation, autoimmunity, blood-brain barrier disruption

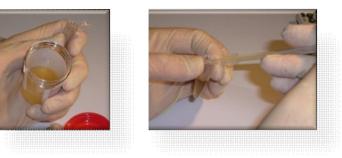
Genetic background plays a role in TH17 upregulation

Polymorphisms of IL-17F, IL-6, TLR4, TGF- β genes are associated with ME and other intestinal diseases (Crohn's disease, UC, IBS)

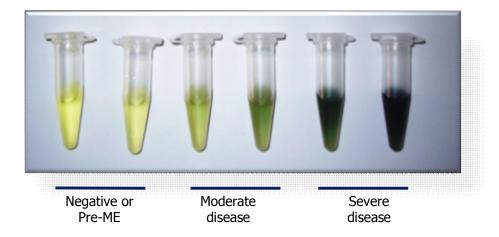
2013页运动系统	Contents lists available at ScienceDirect
	Biochemical and Biophysical Research Communications
FISEVIER	journal homepage: www.elsevier.com/locate/vbbrc
	uency of IL-17F sequence variant (His161Arg) in chronic fatigue
syndrome	uency of IL-17F sequence variant (His161Arg) in chronic fatigue

- Urine test for marker associated with H₂S production
- Intestinal microflora evaluation
- Heavy metals analysis
- Presence of proteins with abnormal conformation
- Assays evaluating subsequent immune dysfunctions (immune dysregulations, opportunistic infections...)

A marker associated with H₂S production can be measured with a simple urine test


1. Collect urine

2. Open tube containing test reagent


3. Add a few drops of urine to the test reagent

4. Mix by shaking gently. Wait for two minutes

5. Observe color changes. Dark color = positive sample

• Investigation of the microbial flora of the intestinal tract

- Quantifies major aerobic and anaerobic bacterial groups and yeast

- Focuses on dysbiosis (imbalance of the intestinal ecosytem) rather than digestive analysis to ascertain gut integrity

Challenge: keep anaerobic bacteria viable for analysis

- Validated oxygen-free, temperature controlled collection and shipping system

Microbiological assay : sample result

• Patient presents increased Streptococcus, Enterococcus, and Prevotella

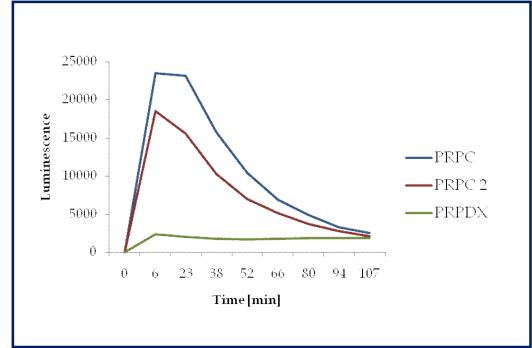
	OB: 31/10 W):	0/1940	G	ender: Female				Z.1 Research B-17 Phone: +32-(0)2-4
Name: Address:								Fax: +32-(0)2-4
Referred by: Kenny De Mei	rleir, Phy	/sicia	n					
Diagnosis or Comments:								
Collection Date 28/04/2009	Receipt	Date	28/	04/2009 Entry D	ate 28/04/20	09	Sa	nple ID: M090236
otal Counts	cfu/gm	Lo	ні	Normal Range				
Total Bacterial Count	1,4E+10			(1.0E+9 - 1.0E+12)				
Aerobe : Anaerobe Ratio	7,8E+00		۲	(1.0 - 2.0) = (Aero	be count/Anae	robe	count)	x 1000
erobic Bacteria		Lo	Hi	Normal Range				
Total Aerobe Count	9,7E+07			(1.0E+7 - 1.0E+8)	Percentage	Lo	Hi	Normal range
Escherichia coli	1,0E+07			(7.0E+6 - 9.0E+7)	10,4%	۲		(70% - 90%)
Hafnia sp.	5,0E+06		۲	(<1.0E+6)	5,2%			(<10%)
	0,0E+00			(<1.0E+5)	0,0%			(<1%)
	0,0E+00			(<1.0E+5)	0,0%			(<1%)
Staphylococcus spp.	0,0E+00			(<2.0E+5)	0,0%			(<2%)
Total Enterococcus	1,3E+06		۲	(<5.0E+5)	1,3%		0	(<5%)
Total Streptococcus	8,0E+07		۲	(<3.0E+5)	83,1%		۲	(<3%)
Ipha-haemolytic streptococcus	3,0E+05			(<3.0E+5)	0,3%			(<3%)
non-haemolytic streptococcus	8,0E+07		۲	(<3.0E+5)	82,8%		۲	(<3%)
beta-haemolytic streptococcus	0,0E+00		0	(<3.0E+5)	0,0%		0	(<3%)

	cfu/gm	Lo	Hi	Normal Range				
Total Bacterial Count	1,4E+10			(1.0E+9 - 1.0E+12)				
Aerobe : Anaerobe Ratio	7,8E+00		۲	(1.0 - 2.0) = (Aerobe	count/Anae	robe	count)	x 1000
naerobes Total Count	1,4E+10	0	0	(1.0E+8 - 1.0E+12)	÷	Lo	Hi	Normal range
Total Bacteroides	5,0E+08	0	0	(9.0E+7 - 9.5E+11)	3,6%) 💿	0	(90% - 95%)
Bacteroides fragilus spp.*	5,0E+08			(9.0E+7 - 9.5E+11)	3,6%			(90% - 95%)
Bacteriodes urealyticus spp.*	0,0E+00				0,0%		11.2	
Prevotella spp.*	6,6E+09		۲	(<5.0E+8)	47,3%		۲	(<10%)
Porphyromonas spp.*	1,5E+09		۲	(<5.0E+8)	10,8%		۲	(<10%)
Eubacterium	5,0E+09		۲	(<1.0E+9)	36,1%		۲	(<15%)
	0,0E+00			(<2.7E+7)	0,0%			(<15%)
Bifidobacterium*	3,0E+08	0	0	(5.0E+6 - 5.0E+8)	2,2%	۲	0	(5% - 11%)
	0,0E+00				0,0%			(5% - 11%)
Lactobaccillus*	0,0E+00	۲	0	(5.0E+5 - 1.0E+7)	0,0%	۲	0	(0.5 - 1.5%)
	0,0E+00		0		0,0%			(0.5 - 1.5%)
Total Clostridium	0,0E+00	۲	0	(<5.0E+8)	0,0%	•	0	(1% - 10%)
Clostridium spp.	0,0E+00				0,0%			(1% - 10%)
	0,0E+00				0,0%			(<10%)
	0,0E+00		0		0,0%		0	(<10%)
Total Peptostreptococcus	0,0E+00		0	(<1.0E+5)	0,0%		0	(<1%)
Peptostreptococcus spp.	0,0E+00				0,0%			(<1%)
	0,0E+00				0,0%			(<1%)
	0,0E+00				0,0%			(<1%)
	0,0E+00		0	(<5.0E+8)	0,0%		0	
	0,0E+00			(<5.0E+8)	0.0%			

Heavy metal analysis : sample result

• Patient presents mercury and nickel intoxication

öhrenstrasse 20 D-91 SA. P.O.Box 4613; B	1217 Hersbruck oulder, Co 80306-4613		49 (0) 9151/4332 49 (0) 9151/2306	http://www.microtrace.de;
MINE	RAL ANALY	TELE I		service@microtrace.de
MINE	RAL ANAL I	515	Urine	1UR92853
Doctor	Prof. Dr. K. I	De Meirleir		
Patient Name		•••		
Clinical Informati		ml DMPS+150ml Na		
Test Date	20. Mai. 09 D.O.B.	31.12.1987	Sex f	Creatinine (g/l) 0.3
Essential Macro-	& TraceElements (m	g/g creatinine)	Low Acce	ptable Range High
	Acceptable Range			
Calcium	55.00 245.00	137.05	******	*****
Magnesium	12.00 150.00	89.75	******	****
Zinc	0.07 7.00	3.64	*****	*****
Essential Trace F	Elements (mcg/g Crea	tinine)	Low Acce	ptable Range High
Losennar Frace L	Acceptable Range		2011	11151
Chromium	0.10 3.50	0.00 Low	<	
Cobalt	< 5.00	0.97	******	***
Copper	1,45 60,00	651,86 High	*****	*****
Iron	2,0095,00	12,34	*********	de ale
Manganese	< 4,50	2,95	******	非非非非非非非非
Molybdenum	9,70100,00	13,03	******	*
Selenium	12,00 90,00	10,24 Low	*****	
Vanadium	< 70,00	0,24	*****	*
Potentially Toxic	Elements in mcg/g C	reatinine	Low Acce	ptable Range High
	Acceptable Range	Test Value		
Aluminum	< 125,00	19,75	****	***
Arsenic	< 15,00	7,67	*****	****
Barium	< 8,22	1,04	******	**
Beryllium	< 1,20	0,94	******	*****
Cadmium	< 1,50	0,13	<	
Lead	< 5,00	4,88	*******	*****
Mercury	< 1,00	16,56 High	******	******
Nickel	< 3,00	27,69 High	******	*****
Silver	< 1,40	1,47 High	*******	******
Tin	< 5,00	3.23	********	


* The 95percentile Ranges represent baseline urine values and are calculated on the creatinine value. The utilized range is 0.3 to 3.0 g/L creatinine (WHO 2005). For chelator-specific information see attachments.

Accreditation: DIN EN ISO 17025; Quality control: Dr. Rauland PhD; Validation: Dr E.Blaurock-Busch PhD

Abnormal protein conformation assay

• Aberrant luminescence response indicates abnormal conformation

• Gastro-intestinal dysfunctions play a central role in the pathogenesis of ME

• Dysbiosis detrimental effect mediated by increased production of H₂S

• Immune dysfunctions and opportunistic infections arise as a consequence of pre-existing intestinal problems

Once established, infections will contribute to the maintenance/aggravation of the disease

Acknowledgements

• Henry Butt at the Bio21 Institute, University of Melbourne

• Marian Dix Lemle, Independent Researcher, Washington DC

Med Hypotheses. 2009 Jan;72(1):108-9. Epub 2008 Sep 16. Hypothesis: chronic fatigue syndrome is caused by dysregulation of hydrogen sulfide metabolism. Lemle MD.